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I. Introduction 
 

In April 2002, at the VI Conference of the Parties of the Convention on Biological 
Diversity (CBD), most countries of the world decided to: “achieve by 2010 a significant 
reduction of the current rate of biodiversity loss at the global, regional and national 
level” (Decision VI/26). In order to verify the fulfillment of the decision, the several 
bodies and advisors to the CBD began proposing indicators to measure changes in 
biodiversity. Thus far, the only indicators of species-level biodiversity status that have 
been implemented, circulated, and quoted widely in CBD documents are aggregated 
indicators, compiled at the global level by consortia of NGOs and United-Nations bodies. 
In particular, Red List Indicators (RLI) (Butchart et al. 2005; Butchart et al. 2004) and the 
Living Planet Index (LPI) (Loh et al. 2005; Loh and Wackemagel 2004) are quoted as 
such indices. These indices are global in scope (they can sometimes be downscaled to 
regional levels), are based on secondary data, and are assembled by groups of experts in 
the developed world. As such, they are difficult to scale and extend to other spatial 
extents and other situations. 

The existence of global-level indicators should be welcomed since they provide a 
useful and practical view of biodiversity at the planetary level. However, the CBD, in its 
decision VIII/15.11, urged parties and other governments to “develop national and/or 
regional goals and targets and related indicators” and also emphasized the “need for 
capacity building, access to and transfer of technology … in order to enable [countries] 
to develop knowledge, including taxonomic knowledge, to gain access to their 
biodiversity, and to better implement activities to achieve and monitor progress towards 
the goals and targets” (UNEP/CBD/COP/8/31/VIII/15.12). 

In this report, we will argue, with detailed, real-life, worked examples, to 
demonstrate: 

 
1) That the primary biodiversity data served through the GBIF portal can be used to provide 

indices of “trends in the abundance and distribution of selected species” 
(UNEP/CBD/COP/8/31/VIII/15.12).  

2) Following wording reiterated over many documents and decisions of the CBD, that GBIF-
data-based indices can in principle be applied to any kind of “selected species” and not only 
to those that are globally endangered, as the RLI inevitably does. 

3) That such new indices, based on publicly available information such as that enabled by 
GBIF, can be calculated at global, regional or national levels by trained local experts and, by 
resorting to ancillary data, can be expressed as time series. 

4) And finally, that the very existence of GBIF is a major effort of transferring taxonomic 
knowledge, consistent with CBD exhorts and decisions; training experts in developing 
countries, as GBIF has been doing in the last two years, represents a concrete example of 
capacity-building in those skills required for countries to develop their own indicators of 
achievement of the 2010 target. 

 
In our view, primary data of the kind that GBIF has been enabling, improving, and 
making freely available represents a fundamental asset for developing countries, 

 2



specifically to develop indicators of achievement of the 2010 Target. The Governing 
Council of GBIF should made be fully aware of this capacity and functionality.
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II. Current GBIF Data Holdings as They Relate to the Indicator Process 
 

 Biodiversity informatics projects are very numerous at present (Canhos et al. 
2004). Different efforts focus on aspects of taxonomy (e.g., Species20001, ITIS2, GTI3), 
conservation status (e.g., WCMC4, BirdLife International5), and natural history (e.g., 
FishBase6). This field is burgeoning with the appearance of funding programs, 
conferences, symposia, and courses to fill the need for relevant information. 

A key role, however, is played by what we will call primary biodiversity 
information. Primary biodiversity information is made up of data records that place a 
particular taxon in a particular place at a particular point in time. All other sorts of 
biodiversity data—names, conservation status estimates, range maps, etc.—are secondary 
in nature. That is, secondary sources represent the product of interpretation by humans, 
and are invariably based in some way on primary biodiversity information—as such, the 
primary data are the key infrastructural element for the field of biodiversity informatics. 

The traditional repositories of primary biodiversity information have been natural 
history museums worldwide, which are estimated to hold on the order of 1 x 109 
scientific specimens (Krishtalka and Humphrey 2000). These specimens and associated 
data are particularly crucial, as they hold the key to linking to biological nomenclature, 
via type specimens and the rich scientific literature over the past three centuries. More 
recently, however, numerous observation-based efforts have been initiated, which are 
now providing extensive additional primary biodiversity information, and with 
magnitudes of numbers of records much larger than the specimen-based data sets. Both 
types of primary biodiversity information, however, are useful—the specimen 
information has the advantage of being vouchered, permitting reidentification and 
verification, and of providing a rich historical context; the observational data, on the 
other hand, have the force of numbers to document complex phenomena in greater detail. 

Although GBIF has several primary biodiversity data sets that can be assembled 
very naturally in time series (for example bird observations, on the order of 107 data 
records), the statement has been made that the museum holdings cannot be used to 
establish trends since they cannot be interpreted simply as time series (UNEP-WCMC 
2006). This statement is inaccurate, as we will demonstrate later, but we first begin 
describing some features of the current GBIF database. 

GBIF currently (as of September 2006) has just crossed the landmark of 108 data 
records from 179 data providers. Data providers are scattered worldwide, although they 
are concentrated in Europe and North America. This pattern is perhaps appropriate, given 
the well-known concentration of biodiversity information in the biodiversity-poor 
countries of the North. GBIF provided the authors of this report with a broad sample of 
the data available on the site as of early September 2006, in all 7.9 x 107 data records, of 
which we will present a brief analysis herein. 

 
 

                                                 
1 http://www.sp2000.org/.  
2 http://www.itis.usda.gov/.  
3 http://www.biodiv.org/programmes/cross-cutting/taxonomy/default.asp.  
4 http://www.unep-wcmc.org/.  
5 http://www.birdlife.org/.  
6 http://www.fishbase.org/home.htm.  
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The earliest records in the GBIF 

network come from around 1800, 
indicating that 200 yr of scientific 
information is summarized in the 
network. Interestingly, the accumulation 
of information per year is quite-nearly 
linear on a logarithmic scale (see figure 
at right, which summarizes number of 
records in the GBIF-mediated archive 
per year over the past 200 years). With 
each 50-55 yr of time, the amount of 
information available per year increases 
by an order of magnitude. Although it 
could be argued that this tendency may 
not continue far into the future, many large-scale observational data-gathering efforts 
promise extremely dense biodiversity sampling, and new technologies (e.g., remote 
sensing at fine scales) may indeed make such data fluxes possible. 

 
Countries ranged in representation in the GBIF data resources in terms of 

numbers of primary biodiversity records from 2 (Liechtenstein) to >16 x 106 (United 
States) primary biodiversity records (see graph at left). The highest ranks are populated 
by countries that might be expected (United States, Canada, Sweden, South Africa, 
Australia, Costa Rica, New Zealand, etc.). However, it is worthy of note that countries 
represented by >105 records include several for which organized biodiversity informatics 
efforts are lacking—nonetheless GBIF now makes considerable biodiversity information 
available to Ecuador, Papua New Guinea, Peru, Nicaragua, Bolivia, and even Swaziland.  

One key to ‘enabling’ biodiversity data fully is that of adding quantitative 
geographic references, in the form of geographic coordinates. Overall, at present, 79.6% 

of data records in the GBIF 
network are assigned 
geographic coordinates, 
which cover much of the 
surface of the Earth, although 
at widely varying densities 
(see map below, which s
the log10 of the number
records per 1° cell globally). 
The remaining 20.4% reco
served via GBIF will 
represent an important fu

challenge for the network—enabling these records spatially via adding geographic 
references will greatly enrich the utility of the GBIF network for spatial questions. N
available Internet-based software tools
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7 will clearly assist in this challenge. 
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The above map clearly displays the predominant amount of records in the 

developed world. However, it also shows that a number of developing countries appear to 
be well covered. This can be shown more precisely in the following figure where 

numbers of records 
georeferenced and 
not georeferenced 
for each country are 
displayed (graph 
has selected 
countries labeled). 
In general, a 
positive relationship 
exists between the 
two, but some 
countries are 
weighted on the s
of more recor
georefere
not (e.g., South 
Africa, Canada, 
Netherlands); oth

countries are weighted towards many records not yet being georeferenced (e.g., 
Mexico)—these countries are certainly those for which a modicum of effort can yield
immediate benefits in terms of improved biodiversity knowledge. 
          In sum
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, data sets served via the GBIF portal represent a sizeable amount of primary 
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information about biodiversity. Indeed, the GBIF data facility is without doubt the largest 
single data resource regarding biodiversity in the world. GBIF-mediated data have grown 
impressively in the short life of the facility, and show every promise of continuing this 
trajectory.
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III. 2010 Target Monitoring – Existing Work and Possibilities for GBIF. 
 
 A sizeable literature has emerged regarding measurement of progress towards the 
2010 goal of reducing biodiversity loss globally—this work has taken two general tracks: 
 
1. Use of biodiversity and biodiversity loss indices based on aggregations of disparate data 

assembled from a number of sources. An example is the Living Planet index (LPI) (Loh and 
Wackemagel 2004). 

2. Use of biodiversity indices based on number of species assigned by experts to different 
endangerment categories, particularly the ‘Red Lists’ maintained from the UNEP-World 
Conservation Monitoring Centre. These indices are called Red List Indices (RLI) (Butchart et 
al. 2005; Butchart et al. 2004; Smith et al. 1993; Stuart et al. 2004). 

 
The result of broad application of these approaches has been the conclusion that 
biodiversity loss continues, and that conservation activity in recent decades have had 
little impact on the rate of this loss. Regional differences—of course—are detected, and 
these differences map onto known shifts in land use and human population distributions. 

While these approaches have yielded interesting insights into the global status and 
broad-scale trends of biodiversity through time, they are nonetheless surprisingly indirect 
or opaque. That is, each is dependent on numerous assumptions to connect the index with 
biodiversity loss. For example, the LPI approach depends on pooling (taking the 
geometric mean of) a hodgepodge of independent species trends (disaggregated down to 
major biome or biogeographic realm) provided by secondary sources including gray 
literature. The idea is simple and probably valid, but independent reconstruction of the 
index would be impossible without access to the original worked-out databases. The 
reader has no choice but to trust the authors.  

The endangerment index-based approach, on the other hand, depends on the 
accuracy and consistency of the expert opinion upon which those indices are based. What 
is more, RLIs are a function only of the status of threatened and endangered species (the 
categories, although operationally defined, are arbitrary), and are limited to those groups 
for which comprehensive endangerment assessments have been developed. As such, the 
RLI approach is little scalable and extendable to include larger sectors of biodiversity.  

In both cases, the inferences used to date as indicators for the 2010 target tracking 
are based on secondary information sources, and are little able to be applied at other 
scales (e.g., single countries, regions). As such, these previous efforts are limited, their 
applicability is not general and their acceptance by countries in fora like the CBD is at 
best problematic. GBIF-based information represents an interesting alternative that is 
scalable and extendable, and that can be implemented by scientists and technicians in 
countries of high biodiversity concern. 

 
Trend Analysis – A GBIF-based Example 
 Primary biodiversity data can form the basis for development of detailed 
summaries of species’ geographic and ecological distributions (Elith et al. 2006; Guisan 
and Zimmermann 2000; Soberón and Peterson 2004). These data can be integrated in 
diverse manners with information on land use change and other environmental change to 
derive species-specific assessments of range loss (or gain) (Araújo et al. 2006; Pearson 
and Dawson 2003; Pearson et al. 2002; Peterson et al. 2006; Peterson et al. 2005; 
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Sánchez-Cordero et al. 2005; Thomas et al. 2004). The large-scale data resources served 
by GBIF offer opportunities for development of biota-wide assessments (Peterson et al. 
2002b), but based on real species and their individual ecological needs and geographic 
distributions. 
 Here, we develop a small-scale illustration of the potential of these approaches—
based on a comparison of two regions of Mexico in terms of land-use mediated 
biodiversity loss. This example is not intended to be comprehensive in any way, nor is it 
developed in sufficient detail to be satisfactory—rather, we intend to illustrate the 
feasibility and potential of the approach. We emphasize three points: (1) Such analyses 
can be developed using GBIF data and can provide detailed trend assessments. (2) They 
can be performed at any spatial scale, from that of continents down to the resolution of 
the georeferencing of the occurrence points themselves. (3) These analyses can be 
performed after relatively little training, and are accessible to technicians in any 
developing country (note that GBIF has to date carried off 2 global training workshops in 
these techniques). 
 
Predicting Geographic Distributions of Species 
 A first challenge in development of this illustration is the question of whether 
GBIF-served primary biodiversity data are sufficient as the basis for models designed to 
predict geographic distributions of species. We base our distributional predictions on the 
technique of ecological niche modeling (ENM). ENM is a suite of quantitative tools 
aimed at reconstructing the ecological requirements of species—the “ecological niche,” 
which can be defined as the set of environmental conditions within which a species can 
maintain populations without immigrational subsidy (Grinnell 1917; Grinnell 1924). 
Once the ecological niche is characterized, it can be used to query a landscape (at any 
scale) to identify areas of potential distribution for the species; these potential 
distributional estimates are extremely useful in anticipating the potential for species’ 
invasions (Peterson 2003a; Peterson and Vieglais 2001), but can also be reduced to 
hypotheses of actual distributions of species under quantitative and repeatable assumption 
sets. A sizeable literature now documents the predictive power of these approaches 
(Araújo and Guisan 2006; Araújo et al. 2005b; Berry et al. 2002b; Elith and Burgman 

2002; Elith et al. 2006; Guisan et 
al. 2007; Guisan and 
Zimmermann 2000; Illoldi et al. 
2004; Lehmann et al. 2002; 
McNyset 2005; Pearson et al. 
2002; Pearson et al. 2006a; 
Peterson 2001; Peterson et al. 
2002a; Phillips et al. 2004; 
Thuiller et al. 2004; Wiley et al. 
2003). 
 As a GBIF-data-based 
illustration of these approaches, 
we focused on the Northern 
Anteater Tamandua mexicana. 
The GBIF network provided 90 
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occurrences for the species, drawn from 12 institutional databases (Cornell University 
Museum of Vertebrates, Field Museum of Natural History, Florida Museum of Natural 
History, Museum of Comparative Zoology, Michigan State University Museum, Museum 
of Natural Science, Louisiana State University, Museum of Vertebrate Zoology, 
Paleobiology Database, Royal Ontario Museum, Instituto de Biología UNAM, University 
of Tennessee – Chattanooga, and the University of Washington Burke Museum). These 
occurrences were sparsely scattered across the species’ known distribution in the northern 
Neotropics (see map above). 
 An ENM was developed for Tamandua mexicana using a genetic-algorithm 
approach8, which provided a prediction of the species’ geographic distribution. To assess 
the robustness of this prediction, we overlaid more detailed data available to us from 
within Mexico—another 45 occurrence points. Interestingly, these occurrence data 
corroborated several of the ENM predictions that may, at first glance, have appeared to 
be modeling errors or artifacts, in particular the occurrence of the species broadly along 
the west coast of Mexico and across most or all of the Yucatan Peninsula (see map at left, 

which shows GBIF-mediated 
data on which the ENM was 
based as blue squares, and 
independent national data as 
green squares). Thus we see 
that the GBIF-served data were 
more than sufficient to 
anticipate the spatial 
distribution of an additional 
50% more information and to 
characterize the species’ 
geographic distribution. 
 
 
 
 

Assessing Effects of Change on Species’ Distributions 
 Several approaches for assessing the effects of environmental change on species’ 
geographic distributions have been developed. That which has seen the most exploration 
is that of development of ENMs based on present-day climates, and identification of 
areas fitting those conditions under future climate conditions (Anciães and Peterson 
2007; Araújo et al. 2005a; Araújo et al. 2006; Bakkenes et al. 2002; Berry et al. 2002a; 
Erasmus et al. 2002; Huntley et al. 1995; Kadmon and Heller 1998; Midgely et al. 2002; 
Midgley et al. 2003; Parra-Olea et al. 2005; Pearson and Dawson 2003; Pearson et al. 
2002; Peterson 2003b; Peterson et al. 2004; Peterson et al. 2002b; Peterson et al. 2001; 
Roura-Pascual et al. 2005; Siqueira and Peterson 2003; Thomas et al. 2004; Thuiller et al. 
2005a; Thuiller et al. 2006), with a growing number of quantitative tests now confirming 
the predictive ability of these models (Araújo et al. 2005a; Martínez-Meyer 2002; 
Martínez-Meyer and Peterson 2006; Martínez-Meyer et al. 2004). However, as the 
climate change effects modeled in these studies are generally at a 2050 horizon, they are 
                                                 
8 http://www.lifemapper.org/desktopgarp/.  
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not so directly relevant to assessing trends relevant to the 2010 target, although more will 
be said about climate change effects on biodiversity below. 
  More directly relevant to the 2010 target are approaches oriented at capturing the 
effects of land use change and conversion of primary habitats into anthropogenic 
landscapes on species’ distributions (Peterson et al. 2006; Sánchez-Cordero et al. 2005; 
Thuiller et al. 2004), which have indeed been the subject of a GBIF-sponsored 
demonstration project9. Here, ENMs were developed based on data layers summarizing 
climate variables, topographic information, and original or primary vegetation, and then 
are projected onto the same conditions, but with present-day land use instead of the 
original vegetation maps. The result is a before-and-after view of the geographic 
distribution of individual species, from which range loss can be calculated easily. 
 As an illustration of the possibility of measuring trends in species’ distributional 
areas and conservation status, focusing on Mexican mammals, we chose six species in the 
endangered list of Mexico: three that are restricted to lowland rain forest in southeastern 
Mexico (Tamandua mexicana, Ateles geoffroyi, Alouatta palliata) and three species of 
highland pine-oak forest in northwestern Mexico (Sciurus nayaritensis, S. aberti, 
Peromyscus spicilegus). We also included a non-endangered but commercially important 
tree species, Guaicum sanctum. For each species, we obtained all of the georeferenced 
occurrence data available via the GBIF site, which invariably were drawn from 8-15 
institutions. These occurrence data were fed into a genetic algorithm designed to develop 
ENMs (Stockwell and Peters 1999)10, along with digital environmental data sets 
summarizing aspects of climate and topography. Then, as these 7 species are all 
connected with primary forest habitats, we reduced ENM predictions to those areas 
retaining primary forest as of 1976, 1994, and 2000 [details on the land-cover data sets 
provided elsewhere (Peterson et al. 2006)], and measured loss of range area, in km2, for 
each species individually. 
 These projections showed a range of effects of land use conversion on species’ 
distributions, from near nil (e.g., Sciurus spp.) to dramatic (e.g., Tamandua mexicana). In 
each case in which range loss was significant, most of the range loss took place prior to 
1976, but with losses continuing through 2000 (see graph below, which shows decline in 
distributional area for 7 species for 1940-2000—species in purple inhabit lowland rain 
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9 http://www.unibio.unam.mx/splm/index.faces.  
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forest species, whereas species in green inhabit pine-oak forest). Both the pattern and the 
magnitude of range loss varied from species to species, emphasizing the key importance 
of individual species-based projections and the minimal utility, at the country-level, of 
aggregated global indices. The examples presented herein are—of course—for the 
purposes of illustration only, and could be improved greatly in several ways; however, 
our point is that GBIF-served data can be used quite effectively to develop species-
specific indicators of trends in biodiversity loss. 
 
Summarizing Trends and Indicators 
 The two habitats/regions of Mexico evaluated above contrast sharply in their rates 
of biodiversity loss, estimated as the slope (in km2/year) of range loss (DA) among the 
mammals in the tropical forests (right 
box) and those in the pine forest (left 
box) (see graph at right, which shows 
slopes of linear regressions of 
distributional areas from 1940-2000, in 
which boxes show standard errors, and 
whiskers show ranges; bce = pine-oak 
forest, bt = lowland rain forest). While 
range loss among mammal species of 
pine-oak forest in northwestern Mexico 
is on the order of 735 km2/year, that 
among species of rainforest in 
southeastern Mexico is considerably 
greater, on the order of 2500 km2/year. 
These contrasting rates of loss illustrate the effectiveness of the species-specific 
indicators of biodiversity loss explored herein. 
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Summary Comments 

The species’ range loss indicators developed above for 7 exemplar species from 2 
habitats/regions of Mexico—if implemented broadly—can then be used to ask more 
general questions about biodiversity status trends in those regions. Of course, the 
evaluations presented herein are based on few species, and would have to be extended to 
many more species before they would be useful for real trend analysis, but the example is 
provided for the purpose of illustration. Each of these species took <2 hours for 
preparation of the analyses from start to finish; processing large numbers of species, with 
data drawn directly from the GBIF site, would be even more efficient, and thousands of 
species could be processed with comparatively little time and effort. Training and 
building capacity in application of these methods is completely feasible, as has been 
demonstrated by GBIF in two training courses to date—more than 40 technicians, 
researchers, and students from around the world are now reasonably well-versed in the 
ENM methodology. 

Most importantly, the methods explored herein are both scalable and extendable 
(see summary table below). That is to say, we illustrate the approach with Mexican 
mammals, but implementation for trees or butterflies or beetles or any other group is 

                                                                                                                                                 
10 http://www.lifemapper.org/desktopgarp/.  
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completely feasible, providing that occurrence data such as those enabled by GBIF are
available. What is more, we have illustrated the methodology at the level of regions 
within a country—it can easily be implemented at coarser scales (e.g., countries to 
continents), or at finer scales (e.g., comparisons of areas inside and outside of prote
areas on local landscapes). This broad spectrum of applicability is both enormously 
promising, and contrasts sharply with the previous efforts to develop 2010 target 
indicators (Butchart et al. 2005; Butchart et al. 2004; Loh and Wackemagel 2004; 
et al. 1993; Stuart et al. 2004), which are neither easily scalable nor easily extendable to 
other taxa. 
 

 

cted 

Smith 

able 1. Summary comparison between Red-List Indices (RLI) versus ENM-based distributional analysis T
approaches. 

Feature Red-list Indices ENM-based Distributional 
Analysis 

Relevance to CBD Conservation of biodiversity Conservation of biodiversity, 
Sustainable use, Benefit sharing Objectives 

Relevance to 
National Strategies 

Indirect: global indices are 
difficult to interpret at a 

national level 

Direct: species can be selected 
at national and local levels, and 
for reasons different from IUCN 

endangerment criteria 
Types of Data Mostly secondary and gray Prim (via 

literature: not widely 
available 

ary: publicly available 
GBIF, other biodiversity data 

resources, geospatial data 
resources) 

Spatial Scope and Global, sometimes regional Global, regional, national and 
even down to local, subject to 

ENM maximum resolution 
Scaling 

Taxonomic Scope Birds and amphibians. Soon, 

s  

Es h 
other terrestrial vertebrates. 

Subject to completion of 
tatus summaries for major

taxa 

sentially all species for whic
data resources are sufficient and 

that relate to coarse-scale 
ecological features 

Uncertainties Considerable and poorly 

c  
categories and expert opinion

Variable, but quantifiable, based 
characterized, based on 
hanges of endangerment

on probabilistic and statistical 
methods 

Ownership Any researcher with proper International NGOs and UN 
agencies training, including national 

biodiversity agencies 
Testability Dubious, based on arbitrary Direct: field tests can be carried 

categories and classifications out readily 
 

 

 

 12



IV. Proposed Approach 
 

As we have already said, the fact that GBIF-served data (with the exception of the 
observational data) are not intrinsically temporal does not prevent their use in developing 
temporally-organized indicators. In essence, what we propose is to use primary data to 
estimate areas of distribution and then reduce those areas on the basis of land-use 
information that can be organized as time series. The approach we propose is based on a 
published method (Peterson et al. 2006; Sánchez-Cordero et al. 2005) and is summarized 
in the figure below. 

 

(2) Obtain primary 
biodiversity data from GBIF 

and other sources

(3) Check taxonomic 
accuracy and georeferencing

completeness 

(1) Select species of 
interest

(4) Select ENM  
algorithm and appropriate 
environmental variables

(5) Develop ENM and  
reduce to obtain 
hypothesized DA 

(6) Validate model 
predictions to assure 

model quality 

(7) Obtain multitemporal 
land-cover datasets for 

region of interest  

(8) Calculate range 
reductions through time

(9) Calculate range-loss 
indices across species

 
 

1) Species selection. A single species or group of species, or entire faunas, floras, or 
biotas, can be selected for any reason related to the objectives of the CBD: for 
example, endangered species subject to national legislation, species of economic 
importance, or taxonomic groups with potential for bioprospecting. However, since 
the procedure requires that areas of distribution of these species be reduced using 
information about land-use change, it is important to select species with clear habitat 
preferences or associations. For example, only the most drastic changes in land-use 
will affect species like European Starling (Sturnus vulgaris) or Red-winged Blackbird 
(Agelaius phoeniceus), whereas groups like manakins (Pipridae) or forest primates 
tend to be affected more directly by land-changes. These latter species would be good 
candidates to select for our method, but habitat generalists would generally be poorer 
choices.  
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2) Data acquisition. The current GBIF interface allows the user to obtain raw data from 
hundreds of providers around the world quickly and efficiently. Other data resources, 
of course, exist and can be consulted, but the GBIF data resources are the largest in 
the world by orders of magnitude. The entrance to the GBIF query interface is via a 
catalogue of names that eventually will contain the authoritative catalogues that GBIF 
is assembling. For the present, however, this interface only enables the user to 
navigate the most obvious taxonomic hurdles. 

3) Taxonomic and geographic consistency. The data obtained from the interface must 
be checked against authoritative taxonomic sources to enable detection and resolution 
of taxonomic problems such as homonyms and synonyms. This problem becomes 
more complex when numerous disparate databases are aggregated, but use of 
mapping tools, good metadata, and taxonomic catalogues can help considerably in 
detecting problems. Georeferencing should also be checked, at the very least to spot 
inconsistencies between coordinates and political boundaries, and checking the spatial 
precision of the georeferencing. Many major collections are now performing such 
checks, and software capable of dealing with such problems is now available. Unwary 
users, however, may still believe that every GBIF-provided record has the same 
quality—rather, GBIF should be up front about the need to check for inconsistencies 
in taxonomy or georeferencing.  

4) Selection of ENM algorithms and environmental variables. To estimate the 
distribution area (DA) of a species, the first step is to model its ecological niche using 
ENM tools (Soberón and Peterson 2005). At least 15 algorithms have now been used 
for this purpose—these approaches often differ in their predictive capacities (Elith et 
al. 2006; Pearson et al. 2006b). Given the fact that GBIF-mediated databases 
generally do not include information regarding absences of species (although absence 
information can be extracted from some GBIF databases), the ENM algorithm must 
be one of the “profile” (presence-only) methods or the algorithm must be provided 
with pseudoabsence information. Depending on details such as the spatial extent over 
which predictions will be made, one method might be preferable over another. For 
example, very dense sampling over relatively small regions can be modeled very well 
with Maxent (Phillips et al. 2006). Larger regions, with smaller amounts of more 
clumped occurrence points may be better modeled using GARP (Soberón and 
Peterson 2005).  

ENM requires a suite of informative environmental variables that can be used by 
the algorithm to characterize the ecological niche. Climatic and topographic variables 
have shown to be reliable predictors of species’ distributions, but the details of these 
choices depend on spatial scale (Guisan and Zimmermann 2000) and (of course) data 
availability. Distributions of species normally have geographic extents of about 105-
107 km2, and can be estimated at resolutions of 100-103 km2. At these scales--scales 
suitable for development of biodiversity loss indicators, experience has shown that 
digital elevation models and mesoclimate databases like WorldClim can provide rich 
environmental information; also promising are multitemporal vegetation indices 
drawn from remotely sensed imagery. These types of variables are available publicly 
worldwide11,12; in addition, increasing numbers of countries, including developing 

                                                 
11 http://www.worldclim.org/.  
12 http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html.  
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countries, have their own, higher-resolution data layers that also are suitable for 
ENM. 

5) Modeling. Application of algorithms like Maxent or GARP generate an ENM, which 
in turn can be used to identify putatively habitable areas across a geographic region. 
This geographic expression of the ecological niche constitutes a hypothesis regarding 
the potential (not actual) area of distribution of a species. Depending on technical 
considerations (Soberón and Peterson 2005), this potential area can be reduced to a 
hypothesis of an actual distributional area using explicit assumptions about sampling 
biogeographic regions, or via incorporating information about migration and 
population expansion (Svenning and Skov 2004). Estimation of DAs has intrinsic 
uncertainties that are seldom quantified—this area of research is currently quite 
active, and methods for estimation of probabilistic uncertainties to DA are under 
development (Argaez et al. 2005). 

6) Validating models. Hypothesized DAs should be checked empirically. Options range 
from (best) independent field explorations designed to accumulate independent 
information with which to test the model predictions (Feria and Peterson 2002; 
Raxworthy et al. 2003), to (acceptable) checking model predictions against unused 
subsets of data (Anderson et al. 2003; Elith et al. 2006; Guisan and Zimmermann 
2000). Such validations are onerous, but are feasible even for large numbers of 
species.  

7) Incorporation of land-use change data. The next step in the process requires 
reducing estimated DAs using information about land-use change from multiple time 
periods. This type of information is available world-wide at low resolutions, using 
data drawn from the AVHRR and MODIS sensors. At higher resolutions, LandSat or 
even Spot data can be used, but their availability becomes more restricted and costly. 
For the long-term development of biodiversity indicators, many countries are 
focusing resources on improving access to higher-resolution land-use data. 
Development of trend indicators, as exemplified above, requires such information for 
multiple time periods. 

8) Reduction of DA by land-use change data. The penultimate step consists of 
successive maskings of DAs using land-change information. This step is performed 
via straightforward GIS technology, and yields DA estimates that are functions of 
time. A distributional estimate can be obtained for each land-use data set available. 
These reductions in DA can be expressed in km2, or as a percentage loss of the 
original distributional area. 

9) Indices of biodiversity loss. An almost endless number of indices can be calculated 
from temporal series of reductions in DA13. Here, we have used one of the simplest: 
reduction in DA with time. In a plot of remaining area as a function of time, the slope 
of a linear regression model (in km2/year) provides a simple index of biodiversity 
loss. In this report, we have made no effort to use more sophisticated measures like 
fragmentation, connectivity, and so on, although border effects are well-known to be 
important in conservation of viable populations (Stouffer et al. 2006). Rather, the 
point is that the method we have described yields time-series of DAs that: (i) have 
direct biological interpretations, (ii) are obtained rigorously and repeatably, using 
publicly-available primary biodiversity data and well-tested algorithms, and (iii) can 

                                                 
13 http://www.umass.edu/landeco/research/fragstats/fragstats.html 
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be analyzed statistically and quantitatively in a variety of ways to suit the needs of 
different users. 

 
The conclusion of this section is that procedures have been developed that allow diverse 
countries to use GBIF-mediated data to create their own indices of biodiversity status for 
monitoring compliance with the Target 1.2 of the CBD’s decision VI/26. Selecting a 
number of species of global concern and performing the analysis at a global scale is 
certainly feasible, and this exercise would provide an interesting contrast to existing 
global indices. Users can be trained in the use of these procedures—in fact, GBIF has 
already trained >40 students from many parts of the world in its use. International bodies 
like the CBD should be made aware of the tremendous potential that GBIF data has for 
the monitoring of the 2010 Targets, and increased training should be encouraged. 
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V. Improvements to GBIF Data 
 

GBIF data are primary biodiversity data (Soberón and Peterson 2004). Besides 
being raw data lacking subjective interpretations, the main advantages of primary 
biodiversity data lies in their sheer magnitude, as well as in scalability and extendability 
to many uses and applications. No other non-molecular biological data resource can 
match the magnitude of  these data, either in the form of museum specimens or of 
observations of key taxa. Use of primary data allows maximum flexibility of use, but at 
the same time requires careful quality control, and intelligent use of statistical and 
informatics tools (Chapman 1999; Chapman 2005; Chapman et al. 2005; Soberón et al. 
1996). Three main problems may hinder use of GBIF data for indicator purposes: (i) 
improper taxonomic identifications, (ii) adherence to incorrect or outdated taxonomic 
authorities, and (iii) lack of correct and precise georeferencing. We discuss each of these 
concerns briefly below. 

Taxonomic metadata. Since GBIF does not manage the datasets it serves, nor 
perform the observations, it cannot control the correctness of taxonomic determinations. 
What GBIF can and should do is to request data providers to include full documentation 
about datasets. This documentation (“metadata,” in the jargon of the field) should be 
detailed enough as to enable any user to understand what steps have and have not been 
taken to assure that correct identifications are assigned to each data records. Data 
providers can point to doubtful sectors of datasets where misidentifications are most 
likely to occur. Providing means by which authoritative users can give feedback about 
misidentifications and other taxonomic problems would constitute a source of value to 
data providers and assist in improving the overall data resource. 

Authoritative taxonomic authority information. When querying a primary 
biodiversity database, outdated taxonomy can generate type I (rejecting good data) and 
type II (accepting faulty data) errors. The need for tools and practices that enable users to 
assess quality of datasets cannot not be overstressed, since outdated nomenclature can 
populate queries with incorrect presences that will confuse any algorithm, or thin-down 
an otherwise sizeable dataset. Since databases of heterogeneous provenance are prone to 
have mixtures of taxonomic treatments, queries should be performed to spot synonyms, 
invalid names, or other taxonomic problems. A major GBIF program (the Catalogue of 
Names) aims to organize taxonomic information in a dynamic, distributed system that 
should improve this situation considerably. GBIF should accelerate the process of 
providing users with updated, authoritative catalogues that will diminish number of false 
presences in GBIF-mediated data. Moreover, since numerous algorithms and techniques 
are being developed to facilitate automated data-cleaning (or at least error-flagging), the 
catalogues provided by GBIF should not consist of pdfs or other formats that only 
humans can interpret--rather, taxonomic information should have rigorously-defined 
ontologies, and should be provided in formats accessible to and readable by other 
algorithms. 
 Programs to correct and improve georeferences. ENM algorithms cannot 
perform without precise georeferences. Enriching primary biodiversity data sets with 
geographic coordinates of explicitly estimated precision should rank among the major 
pushes of GBIF. Certain GBIF data providers, like the HerpNet, MANIS, and ORNIS 
projects in North America, have developed detailed methodologies and protocols for 
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georeferencing records, thus creating databases rich in geographical coordinates, often at 
precisions of 1’ or better. The North American networks have used a significant degree of 
community participation in georeferencing efforts, and have achieved georeferencing 
rates of as fast as 12 records per minute.  
 A major improvement in GBIF procedures would be to participate in a initiatives 
for adding and enriching georeferences for the ~25% of its data records lacking them. 
Such efforts would be particularly beneficial for specimen-based data records, which less 
frequently include quantitative georeferences. These steps could be achieved by 
communities, as MANIS did—and GBIF could potentially link community 
georeferencing with providing detailed national-level biodiversity information for 
countries wishing to enter the biodiversity informatics arena. Another extremely useful 
practice that GBIF might start would be providing automatic tools for data cleaning and 
error flagging, such as the tools already developed by CRIA in Brazil and CONABIO in 
Mexico. 
 Finally, many biodiversity data providers may be reticent about advertising the 
uneven quality of the taxonomic or geographic dimensions of the data they provide. In 
our experience, no museum in the world is free of this type of inconsistency. Indeed, 
several major institutions have databases plagued with inconsistent or incorrect records. 
We need to stress that: (i) this situation is the rule, not the exception—primary 
biodiversity databases need to be checked for inconsistencies prior to detailed analysis. 
(ii) These inconsistencies can be detected and either removed from analysis or problems 
can be corrected. (iii) Although no comprehensive assessments have been published, in 
our experience (mostly with terrestrial vertebrates), inconsistencies and blatant problems 
affect 5-20% of a typical database. 

 In conclusion, problems with misidentifications, problematic taxonomy and 
lacking, imprecise or faulty georeferencing do exist, and do affect a significant 
percentage of mixed-provenance databases, but these problems can be spotted, and data 
sufficient to perform useful analyses can generally be assembled. GBIF can and should 
perform a comprehensive set of assessment exercises to determine the quality of the data 
it serves.
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VI. Mechanisms for Interactions with Established Data Providers in the Indicators 
Process 

Background 
The best means for improving interactions with the leaders of the indicators 

process is to clarify the sorts of data that each institution/initiative actually houses or 
serves. As discussed above, GBIF-mediated data are primary biodiversity data, and as 
such can serve many purposes at many scales of time and space.  

The leaders in the indicators process have generally been conservation-oriented 
organizations. Key and leading examples include the World Conservation Monitoring 
Centre (WCMC)14 and the International Union for the Conservation of Nature (IUCN) 
Species Survival Commission15, as well as groups focused on specific taxa, such as 
BirdLife International16, Butterfly Conservation Initiative17, and Butterfly 
Conservation18. In each case, these organizations collect, develop, prepare, and serve 
valuable information regarding threat/endangerment levels, coarse-scale distributional 
patterns, taxonomy and classification, and (in some cases) compendia of priority areas.  

This information is, nonetheless, secondary in nature—invariably, elements of 
expert opinion (e.g., in setting threat/endangerment levels) or subjectivity (e.g., in 
drawing range maps) have been involved in the process. This comment is not implying 
that the importance of this information is somehow lessened. Rather, it simply is an effort 
to categorize the types of information that are available in a useful manner. 

Indicators towards the 2010 target used to date blur these distinctions. Aggregated 
indicators (Loh and Wackemagel 2004) pool secondary information from the literature. 
The Red List status-based indicators (Butchart et al. 2005; Butchart et al. 2004) have 
been based on secondary biodiversity information in the form of changes in status 
evaluations for species, with only birds and amphibians sufficiently data-rich to date to 
permit analysis. It is worth noting that these status-based indicators are only applicable to 
groups with a status summary available, and are difficult to scale down to be able to 
discern subregional or subnational trends. 

 
Suggested Arrangements 

The species-specific trend approach illustrated above could easily be partnered 
and integrated with status-based approaches to produce a more synthetic product. In this 
case, the GBIF-mediated data provide two key and novel elements to the indicator 
evaluation process: 
 
• The potential for development of species-specific, biota-wide, multiscale evaluations of 

degree and pattern in changing conservation status and biodiversity loss. These 
computationally intensive, species-based indicators can greatly enrich the approaches already 
in use by the conservation initiatives by summarizing patterns of biodiversity loss over the 
past 2-3 decades. 

• The deep-time baseline of the museum-based GBIF-enabled data provides a unique 
perspective on range loss in species. That is to say, the only source of a long-term perspective 
on biodiversity is that of looking back over the past 200-250 years via the specimen record, 

                                                 
14 http://www.unep-wcmc.org/index.cfm.  
15 http://wwwiucn.org/themes/ssc.  
16 http://www.birdlife.org.  
17 http://www.butterflyrecovery.org.  
18 http://www.butterfly-conservation.org.  
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and using these sparse and difficult—but invaluable—data to reconstruct distributional 
patterns prior to extensive disturbance of natural habitats.  

 
The problem in ‘selling’ this arrangement of mutual respect and dependence is 

quite simply that no worked examples exist based on the GBIF-mediated data sets. That 
is to say, most of the indicator analyses published to date are based on difficult-to-
replicate aggregates or on status changes, and only small-scale prototypes have been 
based on primary biodiversity data (Peterson et al. 2006; Williams et al. 2005). 
Development of several large-scale exemplar applications would go a long way towards 
remedying this gap, and would certainly provide a platform for more informed and 
balanced discussions. 

An ideal demonstration of the power of the primary-data-based approach would 
be that of implementing the trend analysis approach for a country that presently lacks a 
broad biodiversity information infrastructure (i.e., not Mexico or Costa Rica or 
Australia). Development de novo of a broad-scale biodiversity summary for a country for 
which rich primary data resources exist (e.g., via the GBIF network) but that has not seen 
intensive development would be an impressive demonstration of the power of these 
primary-data-based approaches. With such a product or products in hand, tabling a 
discussion of relative roles and merits will be much more feasible. 
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VII. Work Programs and Synergies with Other Conventions 
The goals and objectives of the Convention on Biological Diversity extend 

considerably farther than the 2010 targets regarding biodiversity loss. Here, GBIF-
mediated data resources become crucial, and secondary data resources are not able to 
contribute at all. Specific examples relate to invasive alien species, species useful to 
humans, and effects of global climate change on biodiversity. 

The Program on Invasive Alien Species within the CBD framework emphasizes 
the need for information on and risk assessment regarding invasive alien species. A broad 
body of literature now documents the utility of primary biodiversity data such as that 
served through GBIF in assessing the geographic potential of invasive species (Arriaga et 
al. 2004; Beerling et al. 1995; Fonseca et al. 2006; Garnatje et al. 2002; Higgins et al. 
1999; Hinojosa-Díaz et al. 2005; Hoffmann 2001; Honig et al. 1992; Iguchi et al. 2004; 
Martin 1996; Mohamed et al. 2006; Morrison et al. 2004; Nyari et al. 2006; Panetta and 
Dodd 1987; Papes and Peterson 2003; Peterson 2003a; Peterson et al. 2003a; Peterson 
and Robins 2003; Peterson et al. 2003b; Peterson and Vieglais 2001; Podger et al. 1990; 
Richardson and McMahon 1992; Scott and Panetta 1993; Sindel and Michael 1992; Skov 
2000; Sutherst et al. 1999; Thuiller et al. 2005b; Thuiller et al. 2005c; Welk et al. 2002; 
Zalba et al. 2000). These methodologies are now quite well documented as to their ability 
to anticipate the 
geographic potential of 
invasive species, and so 
this is clearly an issue 
to which GBIF and 
GBIF-mediated 
information can inform 
the CBD goals and 
targets. An exemplar 
worked case study is 
shown in the map at the 
right—occurrence data 
for Tamarix 
ramossisima were 
drawn from GBIF-mediated data resources for the species’ native range in Eurasia; an 
ENM was developed, and projected onto Mexican landscapes. The color ramp is from 
white (predicted absence) to dark green (predicted potential for presence). The red circles 
that are overlain represent actual occurrences independent of the development of the 
model, drawn from Mexican national sources; this close correspondence between model 
prediction and independent test data corroborates the model predictions amply. 

Similarly, the CBD’s Program on Sustainable Use of Biodiversity places a 
premium on information relevant to the knowledge about and management of biological 
species of utility—economic, cultural, or otherwise—to humans. Here again, GBIF-
mediated data sets can be enormously relevant. For example, the Guayacan tree 
(Guaiacum sanctum) is of enormous importance to Mexico for both economic and 
medicinal purposes. Its unknown population status and consequent inclusion on a CITES 
appendix placed these uses in doubt—primary biodiversity data obtained and analyzed by 
CONABIO previously clarified its status and distribution, and made clear that sustainable 
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use of this species was 
feasible and did not endanger 
populations of the species. 
To demonstrate the utility of 
GBIF-mediated data for such 
questions, we developed a 
repeat analysis of the 
distribution of the species 
based only on GBIF-
mediated data (see map at 
left, which shows GBIF-
mediated records as pink 
squares, Mexican national 
data sets as yellow squares, 
and the ENM prediction as a 
color ramp – white = 

prediction of absence, dark red = prediction of potential for occurrence)—the result 
strongly corroborated the ability of ENMs based on data available through GBIF to 
anticipate the spatial distribution of richer and more detailed data sets. 

Finally, the U.N. Framework Convention on Climate Change places emphasis on 
understanding the effects of ongoing climate change processes on biodiversity. Several 
summaries have been published laying out likely implications for biodiversity (Chapin et 
al. 2000; Lovejoy and Hannah 2005), and real-time consequences are increasingly 
apparent (Allen and Breshears 1998; Brown et al. 1997; Brown et al. 1999; Cresswell and 
McCleery 2003; Crozier 2003; Inouye et al. 2000; Parmesan 1996; Parmesan et al. 1999; 
Parmesan and Yohe 2003). Nonetheless, a predictive, proactive, forecasting capability 
has nonetheless been lacking—particularly one in which individual species’ responses 
can be tracked and anticipated. 

The ENM approach, again based on primary biodiversity data such as those 
served by GBIF, offers an attractive possibility here (Peterson et al. 2005). ENMs are 
trained based on present-day climates and conditions, and then projected onto modeled 
future projections of climatic conditions; where possible, these projections have been 
tested and their forecasts have largely been corroborated (Araújo et al. 2005a). These 
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forecasts can be developed for individual species with little difficulty—we have 
developed the example for Tamandua mexicana for the sake of illustration (see map 
below—red indicates the likely 1940 range of the species; blue indicates areas in 2000 in 
primary forest habitat that are projected to remain habitable for the species through 
2050). The comparison between present and future potential distributions of the species 
can then be evaluated taking into account different scenarios of dispersal ability (Peterson 
et al. 2002b). These future-climate forecasts can then be examined across many species to 
see regional trends, or attention can focus on single species of particular interest or 
concern. As such, the ENM approach based on GBIF-mediated data sets has much to 
offer to an understanding of climate change consequences for natural systems. 
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VIII. Conclusions 

 
In this report, we demonstrate the utility of primary biodiversity data sets in developing 
indices to assess the “current rate of biodiversity loss at the global, regional and national 
level,” one of the primary mandates of the CBD. Several conclusions can be derived from 
our work: 
  

1)      Primary data, as served by GBIF in quantities larger, by orders of magnitude, 
than any other provider, can be used to obtain effective indices of biodiversity 
loss. 

2)      Such indices can be naturally and easily scaled-down to levels of regions, 
countries, and areas within countries, and can also be based on species selected by 
countries on the basis of any of the three objectives of the convention. 

3)      Two types of data are required to calculate the indices; first, the primary 
biodiversity data served through GBIF by an increasing number of providers, and 
second, remotely sensed information for summarizing changes in land use. Both 
kinds of data are publicly available and their quality, resolution and availability 
are increasing. 

4)      The method we describe to obtain the basic input for the indices, namely, areas of 
distribution of different species, is now well established, with numerous research 
groups in France, Switzerland, Spain, the United Kingdom, the United States, 
Mexico, Brazil, India, and other countries applying them regularly and with 
dozens of publications in major journals describing their possibilities and 
limitations. 

5)      The basic skills and training required to use the method can be taught in short 
courses, like the ones GBIF has supported for the last two years. 

6)      All of the above constitute a major effort in making taxonomic knowledge 
available, in capacity building and technology transfer to developing countries. 
We do not think that the different bodies of the CBD are aware of the extent to 
which GBIF has helped participating countries to advance CBD decisions and 
programmes of work. 

7)      We suggest that GBIF begin supporting GBIF-data-based trend evaluations for a 
country or set of countries, using only GBIF data and a large group of species, in 
collaboration with local institutions--such demonstrative studies should be 
communicated to SBSTTA as an example of how countries can use primary 
biodiversity data for the purposes of the CBD. 
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